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ABSTRACT

Weather radars and gauge observations are the primary observations to determine the coverage and

magnitude of precipitation; however, radar and gauge networks have significant coverage gaps, which can

underrepresent or even miss the occurrence of precipitation. This is especially noticeable in mountainous

regions and in shallow precipitation regimes. The following study presents a methodology to improve spatial

representations of precipitation by seamlessly blendingmultiple precipitation sources within theMulti-Radar

Multi-Sensor (MRMS) system. A high spatiotemporal resolution multisensor merged quantitative precipi-

tation estimation (QPE) product (MSQPE) is generated by using gauge-corrected radar QPE as a primary

precipitation source with a combination of hourly gauge observations, monthly precipitation climatologies,

numerical weather prediction short-term precipitation forecasts, and satellite observations to use in areas

of insufficient radar coverage. The merging of the precipitation sources is dependent upon radar coverage

based on an updated MRMS radar quality index, surface and atmospheric conditions, topography, gauge

locations, and precipitation values. Evaluations of the MSQPE product over the western United States

resulted in improved statistical measures over its individual input precipitation sources, particularly the

locally gauge-corrected radar QPE. TheMSQPE scheme demonstrated its ability to sufficiently fill in areas

where radar alone failed to detect precipitation due to significant beam blockage or poor coverage while

minimizing the generation of false precipitation and underestimation biases that resulted from radar

overshooting precipitation.

1. Introduction

Accurate, high spatiotemporal resolution quantitative

precipitation estimates (QPEs) are crucial for flood and

flash flood operations, hydrologic forecasting, long-term

climatological evaluations, and water resource man-

agement. One common source of measuring precipi-

tation are rain gauges, which provide direct surface

measurements; however, a single gauge observation

based on an orifice of 80–325cm2 typically covers a re-

gion spanning many square kilometers. Large distances

between gauge sites can provide an insufficient rep-

resentation of precipitation. Quina (2003) showed in

Florida that the correlation of gauge observations

decreased significantly when the distance of nearest

neighbor comparisons increased to 20 km with con-

tinued correlated degradation up to a range of 100 km.

Comparisons between gauge observations at a distance of

20km yielded a correlation of approximately 0.30 for

hourly accumulations and 0.55 for daily accumulations.

Young et al. (2000) found a similar decrease in correlation

between nearest neighbor gauge observations with in-

creasing distance utilizing gauge networks in Oklahoma.

Weather radars provide the spatial resolution and

distribution of precipitation that gauge-based point
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observations cannot, yet the estimated precipita-

tion has greater uncertainty due to it being remotely

sensed at varying elevations above the surface. Radar

sampling is impacted by large spatial distances be-

tween radar sites along with range degradation and

blockages in complex terrain, resulting in under-

sampled precipitation (e.g., Kitchen et al. 1994; Smith

et al. 1996; Steiner et al. 1999; Germann and Joss 2002;

Zhang et al. 2012a). Maddox et al. (2002) provides a

detailed description of the restricted coverage of the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

network at various height levels. Coverage gaps within

gauge and radar networks exist in varying degrees

across the contiguous United States (CONUS) and are

more prominent in the western CONUS (Fig. 1).

Gauge observations and radar-derived QPEs have

been combined in various methodologies to improve

precipitation estimations, especially in the context of

advancing radar-derived QPE accuracy (e.g., Seo and

Breidenbach 2002; Smith and Krajewski 1991); how-

ever, bias adjustments of radar-derived precipitation

estimates using gauge observations are only applicable

where radar coverage is available. Zhang et al. (2014)

defined a conceptual methodology of supplementing

radar-derived QPE with a Mountain Mapper QPE

product (Schaake et al. 2004) generated from hourly

gauge observations interpolated onto Parameter-Elevation

Regressions on Independent Slopes Model (PRISM; Daly

et al. 2008, 1994) monthly precipitation climatologies.

The scheme did not fully compensate for radar coverage

gaps but utilized a linear longitudinal blend that used radar-

based QPE only east of 1008W longitude and Mountain

Mapper QPE only west of 1188W longitude. This conse-

quently limited or removed any radar data within the in-

termountain western CONUS and along the Pacific coast,

including regions with unobstructed radar coverage.

Other precipitation sources can also be utilized to

compensate for gaps in radar and gauge observational

coverage. The quality of numerical weather prediction

(NWP) quantitative precipitation forecasts (QPFs), no-

tably those generated by short-range convective allowing

models (CAMs), has substantially improved skill (e.g.,

Clark et al. 2009; Sun et al. 2014; Yussouf et al. 2016). An

assessment of two versions of the High Resolution

Rapid Refresh (HRRR; Benjamin et al. 2016) model-

ing system along with the prototype National Severe

Storms Laboratory (NSSL) Warn-on-Forecast (WoF)

system by Lawson et al. (2018) demonstrated the sig-

nificant progress made with 0–3-h QPFs via advanced

data assimilation methods; moreover, Lundquist et al.

(2019) describes how high-resolution NWP models can

better represent total annual precipitation than the

current collection of gauge observations in mountain-

ous terrain. Numerous studies assessed the quality of

polar-orbiting and geostationary satellite-derived QPEs

and discussed the potential for satellite-derived fields to

mitigate radar coverage limitations (e.g., Kuligowski 2010;

Scofield and Kuligowski 2003; Stenz et al. 2016).

FIG. 1. Height of the bottom of the lowest available radar beam (color fill) per the MRMS

seamless hybrid scan reflectivity height product (Zhang et al. 2016) over the CONUS west of

100.08W longitude along with the locations of hourly gauge observations per the MRMS

system.
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The following study describes a physically based ap-

proach to improve the spatial representation of precipita-

tion by seamlessly blending various precipitation sources

with the current radar coverage over the CONUS. Each

precipitation input is weighted based on their obser-

vational strengths and accuracy that vary based on

atmospheric and terrain properties. The objective is to

generate a high spatiotemporal resolution multisensor

merged QPE product (hereinafter denoted as MSQPE)

within the Multi-Radar Multi-Sensor (MRMS) real-time

system (Zhang et al. 2016).

2. Gap-filling scheme inputs

a. Precipitation inputs and strengths

In situ and remotely sensed precipitation along with

precipitation climatologies and NWP QPFs are utilized

within the MSQPE scheme. Precipitation inputs from

the MRMS system include the locally gauge-corrected

(LGC) radar QPE and Mountain Mapper QPE. Both

products are generated every hour on a 1-km Cartesian

grid. Weather radar data for MRMS are gathered from

NWS dual-polarization WSR-88D radar network in the

CONUS and 30 C-band single-polarization weather ra-

dars across southern Canada operated by Environment

Canada. Quality control of radar data is performed for

each radar site to reduce the impacts of nonmeteorological

echoes (Tang et al. 2014; Zhang et al. 2016). Other cor-

rections are applied to improve data quality, including the

mitigation of beam blockages, data corruption from non-

meteorological features (e.g., wind farms), and brightband

contamination (Zhang andQi 2010; Zhang et al. 2012b; Qi

et al. 2013a,b; Zhang et al. 2016). Precipitation rates were

generated using an experimental dual-polarization syn-

thetic QPE scheme in the MRMS framework for radar

sites utilizing dual-polarization technology (Zhang et al.

2020). Instantaneous rates were calculated from various

dual-polarization variables, including specific attenuation,

which has immunity to radar calibration errors and some

partial beamblockage (Wang et al. 2019). Radars without

dual-polarization capabilities utilized reflectivity values

to derive precipitation rates (Zhang et al. 2016). Derived

precipitation rates are then modified to account for the

evaporation of hydrometeors between the lowest uti-

lized radar beam height and the surface (Martinaitis

et al. 2018).

MRMS LGC radar QPE and Mountain Mapper QPE

rely upon automated hourly gauge observations that

pass quality control measures. MRMS ingests approxi-

mately 20 000 gauge observations per hour across the

MRMSCONUS domain from theHydrometeorological

Automated Data System (HADS; Kim et al. 2009) and

the Meteorological Assimilation Data Ingest System

(MADIS; Miller et al. 2007; Helms et al. 2009). These

hourly gauge accumulations are quality controlled

through a scheme described by Qi et al. (2016) with modifi-

cations outlined byMartinaitis et al. (2018). Approximately

85% of gauge observations per hour are deemed usable

for MRMS QPE generation through this scheme.

Hourly radar-based accumulations are locally bias

corrected using these quality controlled hourly gauge

observations through an inverse distance weighting (IDW)

scheme that varies the radius of the interpolation weight

each hour through a cross validation methodology to

minimize interpolation errors (Zhang et al. 2016). The

correction of biases within the radar-based accumulations

inMRMSusing gauge observations improves precipitation

accuracy across the CONUS in areas of radar coverage

(Zhang et al. 2016). The Mountain Mapper QPE scheme

in MRMS utilizes IDW with a fixed radius of 200km

(Zhang et al. 2016). These gauge observations are critical

to theMountain Mapper QPE generation, especially in

areas of complex terrain that are not sampled well by

radars. The interpolation of gauge observations with

precipitation climatologies in mountainous areas have

provided greater precipitation accuracy in complex

terrain (Schaake et al. 2004; Zhang et al. 2014).

Hourly NWP QPFs are the only non-MRMS source

utilized in the study. Integrated into the scheme are the

1-h forecasts from the operational HRRR version 2

(hereinafter denoted as HRRRv2) at a 3-km horizontal

resolution. HRRRv2model configurations can be found

in Lawson et al. (2018). TheHRRRv2QPFs aremapped

to the MRMS 1-km Cartesian grid for spatial continuity

among precipitation inputs. Satellite-based QPE from

the Self-Calibrating Multivariate Precipitation Retrieval

(SCaMPR; Kuligowski 2002; Kuligowski et al. 2016)

algorithm using the latest Geostationary Operational

Environmental Satellite (GOES) information from

GOES-16 was considered for this study due to its high

spatiotemporal resolution and full coverage over the

CONUS with little product latency; however, analysis

of SCaMPRQPEs showed that the SCaMPR algorithm

struggled with capturing the proper delineation of pre-

cipitation coverage and the magnitude of precipitation

across various precipitation event types (e.g., Fig. 2). The

study presented here does not include a satellite QPE

component in the multisensor scheme.

b. Data limitations

Each precipitation input for MSQPE has its own

inherent set of limitations. Observations recorded by

gauges may not always be representative of reality. The

gauge orifice can be subject to blockages that can under-

estimate or even prevent the measuring of precipitation
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(Sevruk 2005; Sieck et al. 2007). Instrumentation

and siting issues can result in systematic biases and

improper calibration (Groisman and Legates 1994;

Steiner et al. 1999; Kondragunta and Shrestha 2006;

Sieck et al. 2007). Strong surface winds can lead to

precipitation undercatch, and the degree of wind under-

catch varies basedonprecipitation type andgauge shielding

characteristics (e.g., Larson and Peck 1974; Wilson

and Brandes 1979; Yang et al. 1998). Rain gauges have

also been shown to have challenges with accurate liquid-

equivalent accumulations (Metcalfe and Goodison 1992;

Groisman and Legates 1994; Goodison et al. 1998;

Rasmussen et al. 2012) and commonly report zero

precipitation or inaccurate nonzero observations from

blockages of the gauge orifice during winter events

(Martinaitis et al. 2015).

Radar-derived QPEs are subject to error through

improper calibration or the utilization of unrepresen-

tative reflectivity–rain rate (Z–R) and reflectivity–snow

rate (Z–S) relationships (e.g., Joss and Waldvogel 1969;

Wilson and Brandes 1979; Zawadzki 1984; Austin 1987;

Smith et al. 1996; Young et al. 1999). Radar-derived

FIG. 2. Comparison of MRMS (a),(c) LGC radar QPE to (b),(d) SCaMPR satellite QPE for the 24-h accumu-

lation period ending (top) 1400UTC 20Oct 2017 and (bottom) 1500UTC 2Mar 2018. All accumulations shown are

compared to CoCoRaHS gauge observations with coloring denoting the bias of the gridded QPE to the recorded

gauge observation (bubble plots). Yellow boxes denote areas where the SCaMPR satellite QPE missed stratiform

(solid line) and convective (dashed line) precipitation events. Orange boxes denote areas where there were

significant biases in the SCaMPR satellite QPE value compared to the CoCoRaHS gauge observations.
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QPEs based on dual-polarization variables are de-

pendent upon the calibration of both the horizontal

and vertical channels that influence some of the dual-

polarization products. Other challenges include the

appropriateness of the applied precipitation rate re-

lationships and the limitations of dual-polarization

variables for different precipitation types. Sampling

through the melting layer can result in erroneously

high precipitation values (Smith 1986). The lowest

elevation scans can be contaminated by ground clutter

and nonmeteorological echoes (e.g., Young et al.

1999; Harrison et al. 2000); furthermore, nonuniform

beam filling and larger sample sizes with increasing

range from radar can result in nonrepresentative re-

flectivity data or create improper biases in precipitation

(Rogers 1971; Rosenfeld et al. 1992, 1993). The afore-

mentioned limitations of gauge observations can apply

inaccurate bias corrections of radar-derived QPEs (Seo

and Breidenbach 2002; Martinaitis et al. 2015).

The limitations of gauge observations and the inability

to efficiently quality control observations in regions not

adequately sampled by radars can also influence the

quality of theMountainMapperQPE. The challenges of

winter precipitation with rain gauges can greatly reduce

the number of accurate observations; thus, the lack of

observations would not allow for a proper depiction

of liquid-equivalent accumulations in mountainous re-

gions. MRMS Mountain Mapper QPEs systematically

underestimates precipitation when compared to inde-

pendent daily gauge observations (e.g., Martinaitis et al.

2014). Bias analyses over the western CONUS for

October 2017 and April 2018 when synoptically driven

rain events were prevalent consistently show an under-

estimation bias of approximately 20% (Fig. 3). The

MRMS IDW methodology for Mountain Mapper QPE

also allows for a large interpolation of a single nonzero

gauge observation in a gauge-sparse region, including

that of localized convective storms with large accumu-

lation gradients. The depicted areal extent of nonzero

precipitation through the 200-km interpolation radius

is not representative of the true precipitation coverage,

more notably for hourly accumulations , 0.508mm

(0.02 in.; e.g., Fig. 4).

NWP model QPF challenges can be driven by uncer-

tainties from model initialization (e.g., Lin et al. 2005)

and performance with radar data assimilation (e.g.,

Pinto et al. 2015). Duda et al. (2014) summarized other

NWP challenges and ensemble forecasting that can

create errors in QPFs, including uncertainties in initial

conditions, systematic model error, and sensitivities to

microphysics and boundary layer parameterizations.

Similar challenges and uncertainties that impact model-

derived QPFs can also influence other NWP parameters

utilized within the MSQPE scheme. Upstream convec-

tion has also been shown to influence model biases of

downstream convection based on storm motion and

the subsequent impacts on moisture transport and the

low-level jet (Mahoney and Lackmann 2007). Model-

calculated precipitation rates, including the predic-

tion of hydrometeor mixing ratios and fall speeds in

convective-allowing models, also have uncertainty and

limitations that can impact the resulting precipitation

forecast.

c. Defining radar coverage gaps

It is important to understand where radar-derived

precipitation might not be optimal and would require

other sources to improve precipitation coverage and

FIG. 3. Analysis of MRMS Mountain Mapper QPE compared to independent CoCoRaHS gauge observa-

tions over the western CONUS (i.e., west of 1008W longitude) for the month of (a) October 2017 and (b) April

2018. The dashed line represents the one-to-one line. The solid line represents the linear best-fit line with the

associated equation and coefficient of determination (R2). The gauge vs Mountain Mapper QPE sample size

(N) is provided in the bottom-right corner and consists of the number of nonzero pairings for that particu-

lar month.
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accuracy. The MRMS system computes a radar qual-

ity index (RQI) that serves as a proxy for radar cov-

erage and data uncertainty (Zhang et al. 2012a). The

RQI is defined by radar beam blockage and height

characteristics,

RQI5RQI
blk

3RQI
hgt

, (1)

with two primary components: radar beam blockage

RQIblk and radar beam height characteristics RQIhgt,

which accounts for height above radar level (ARL)

and the beam location with respect to the freezing-

level height and brightband thickness. The RQI is

calculated on a unitless scale from 0.0 to 1.0, where a

value of 1.0 represents data with the highest potential

quality.

Adjustments to the Zhang et al. (2012a) logic were

made for this study to better define radar coverage.

RQIblk was modified to accommodate for beam block-

age (blk) up to 60% for a beam that is at least 10mAGL:

RQI
blk

5

8<
:

1; blk, 0:1

12
blk2 0:1

0:5
; 0:1# blk# 0:6

. (2)

A beam that has blk . 60% is not considered in the

generation of seamless reflectivitymaps inMRMSbased

on criteria used to develop hybrid scan reflectivities in

MRMS; thus, the next elevation angle with blk# 60% is

considered in the calculation. The RQIhgt logic is de-

pendent on the radar beam location with respect to the

freezing-level height H0C and a reference height HD

where radar observations become less correlated with

surface precipitation.HeightHD is 1000m for theMRMS

CONUS domain. RQIhgt for areas where H0C . HD

is defined as

RQI
hgt

5

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

1; h,H
D

exp

"
2
(h2H

D
)2

H2
1

#
; H

D
# h#H

0C

exp

"
2
(h2H

D
)2

H2
1,2

#
; H

0C
, h#H

0C
1DH

exp

"
2
(h2H

D
)2

H2
2

#
; h.H

0C
1DH

,

(3)

where h is the adjusted top beam height (m AGL), H1

is a height-scale factor in rain (4000m), H2 is a height-

scale factor in snow (3000m), DH is a transition zone

defaulted at 800m for the height-scale transition from

H1 toH2, andH1,2 is a height scale varying linearly from

H1 to H2 across the transition zone. Heights H1 and H2

are defined to vary the reduction of RQI within the two

different precipitation regimes. RQIhgt for areas where

0 , H0C # HD is defined as

RQI
hgt

5

8>>>><
>>>>:

1; h,H
0C

exp

"
2
(h2H

0C
)2

H2
2

#
; h$H

0C

. (4)

RQIhgt for areas where H0C # 0 is defined as

RQI
hgt

5 exp

 
2
h2

H2
2

!
. (5)

The height parameters were selected subjectively based

on evaluations of MRMS radar QPEs (Chen et al. 2013)

FIG. 4. Comparison of 1-h (a) LGC radarQPE and (b)MountainMapper QPE for the period ending 0800UTC 2

Oct 2018. The lower precipitation accumulations were emphasized in the color scale to demonstrate the differences

between a radar-based approach (LGC radar QPE) and the gauge-only Mountain Mapper QPE with large spatial

interpolations.
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to reflect the relative radar QPE quality degradation

as a function of range via beam spreading and beam

overshooting of microphysical processes that play a

major role in identifying near-surface precipitation

intensity.

Beam height calculations changed fromARL to AGL

to account for variations in beam height over complex

terrain. The mathematical changes to RQI resulted in a

more consistent performance based on the improved

variables to account for sampling degradation with in-

creased range from radar and height AGL along with

adjustments relating to the application of freezing-level

height influences (Fig. 5). The precision of the final

RQI output was increased from 0.1 to 0.01 to prevent

potential discontinuities during the blending of pre-

cipitation sources. These cumulative RQI improve-

ments allow for a better representation of where

optimal radar coverage exists while mitigating arti-

facts and discontinuities (Fig. 6).

3. Multisensor gap-filling scheme

a. Blending logic

The physical blending of multiple precipitation sour-

ces utilizes radar coverage, atmospheric conditions, and

orography based on the various strengths of each pre-

cipitation input (Fig. 7). The MSQPE foundationally

utilizes the equation from Zhang et al. (2014) redefined

as the following:

MSQPE5
w

g
Q

GAP
1 (12w

g
)w

r
Q

LGC

w
g
1 (12w

g
)w

r

. (6)

The LGC radar QPE (QLGC) is the primary precip-

itation input and weighted by the variable wr. The

amalgamation of the remaining precipitation sources is

handled by the gap-fillingQPE (QGAP) weighted by the

variable wg. The QGAP is calculated using the follow-

ing logic:

Q
GAP

5Q
NWP

(12w
m
)1 sw

m
Q

MM
. (7)

Integration of gap-filling HRRRv2 model 1-h QPF

(QNWP) and theMRMSMountainMapper QPE (QMM)

utilizes the Mountain Mapper weighting function wm:

w
m
5w

s
3w

twb
3 (12w

f
)3a . (8)

The static weighting variable ws is defined by a gridded

slope field based on topographic steepness and allows

for QMM to be applied over complex terrain only. Grid

cells with a slope$ 5.08 have a value of 1.00, and a buffer
of 20 km is applied around these grid cells with ws re-

ducing linearly by 0.05 km21 (Fig. 8).

The weighting variable wtwb utilizes the HRRRv2

model surface wet-bulb temperature Twb to delineate

areas of frozen precipitation versus rain to restrict the

use of QMM in winter precipitation due to limitations

of recording accurate liquid-equivalent accumula-

tions. Application of the surface Twb accounts for the

FIG. 5. RQI value calculations with varying freezing-level heights for a radar beam up to a

range of 300 km across a homogeneous surface using the Zhang et al. (2012a) scheme (dashed

lines) and the logic presented in this study (solid lines).
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occurrence of frozen precipitation within environ-

ments defined by above-freezing ambient tempera-

tures and nonsaturated relative humidity values (e.g.,

Matsuo and Sasyo 1981). A threshold surface Twb of

0.008C is used based on the work by Martinaitis et al.

(2015) with a linear transition defined by

w
twb

5

8>>>><
>>>>:

1:00; T
wb

$ 2:00

T
wb

2
; 0:00,T

wb
, 2:00

0:00; T
wb

# 0:00

. (9)

The blending of QNWP and QMM is also characterized

by a delineation of warmer and cooler atmospheric

environments based on the freezing-level height f in

meters AGL to limit the use of QMM in convective

precipitation using the weighting function wf, which is

defined as

w
f
5

8>>>><
>>>>:

1:00; f $ 3000

f 2 1750

1250
; 1750, f , 3000

0:00; f # 1750

. (10)

The use of f and its linear blending value range for

defining atmospheric environments for stratiform and

convective precipitation properties is modified from

the surface precipitation type classification decision

FIG. 6. RQI product (a) calculated from the Zhang et al. (2012a) scheme at 1200 UTC 1 Apr 2018 and

(b) calculated from the modified scheme at 1200 UTC 27 Nov 2018. The environments influencing RQI in both

(a) and (b) are similar.

FIG. 7. Decision tree on the application of the three input QPE/QPF fields into the MSQPE product.
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tree for identifying convective precipitation (Zhang

et al. 2016) based upon evaluations of precipitation

events during the MSQPE product development.

The scaling factor s in Eq. (7) and the variable a in

Eq. (8) address some QMM deficiencies. The persistent

underestimation bias of QMM is corrected through the

scaling factor s set to a constant value of 1.2035 using a

linear best-fit equation based QMM comparisons to

independent gauge data (e.g., Fig. 3). The variable

a prevents the use of nonrealistic light precipitation

coverage (e.g., Fig. 4) via the following logic:

a5

8>>>>><
>>>>>:

1:00; (s3Q
MM

)$ 2:032

(s3Q
MM

)2 0:508

1:254
; 0:508, (s3Q

MM
), 2:032

0:00; (s3Q
MM

)# 0:508

.

(11)

The values of 0.508mm (0.02 in.) and 2.032mm (0.08 in.)

for the linear blending ofQMMare derived fromextensive

internal studies on the interpolation of QMM values.

The weighting functions wr and wg in Eq. (6) balance

the combination of QLGC and QGAP. The weighting func-

tion wr for QLGC is based on the MRMS RQI product as

the proxy for radar coverage. The extent ofQLGC coverage

is dynamically altered based on atmospheric parameters

characterizing warm and cool precipitation environments

via wf. The weighting of QLGC via wr is defined as

w
r
5

1:00; RQI$ (1:002 0:70w
f
)

y; (0:602 0:60w
f
),RQI, (1:002 0:70w

f
)

0:00; RQI# (0:602 0:60w
f
)

.

8><
>:

(12)

The full use of QLGC for stratiform rain and snow en-

vironments is only when RQI5 1.00 and then reduces in

contribution until RQI5 0.60. The influence ofQLGC is

much greater in convective environments, where QLGC

is fully utilized in the RQI range of 0.30–1.00 with re-

duced QLGC contributions until RQI 5 0.00. These

values were defined based on extensive analysis of and

contrasting of shallow stratiform precipitation events to

convective events. The contribution of QLGC within the

dynamic RQI range bounded by the incorporation of wf

is calculated through the cubic polynomial function y:

y5 (n
3
x3)1 (n

2
x2)1 (n

1
x)1 n

0
. (13)

The n variables in Eq. (13) are quadratic functions

dynamically based on wf and are defined by the

following:

n
3
5 39:904w2

f 2 40:464w
f
1 0, (14)

n
2
5259:075w2

f 1 53:614w
f
1 3:3333, (15)

n
1
5 18:168w2

f 2 11:674w
f
2 2:8333, (16)

and

n
0
5w2

f 2 1:5w
f
1 0:5: (17)

The weighting of QGAP via wg also relies upon RQI

and wf; however, it also contains logic to increase the

weight of QLGC at gauge observations within a certain

range of radar influence. The calculations for wg utilize

the following logic:

w
g
5

0:00; RQI$ (1:002 0:70w
f
)

g
i
; (0:6020:60w

f
),RQI, (1:0020:70w

f
)

b; RQI# (0:602 0:60w
f
)

.

8><
>:

(18)

A nonzero value of wg is based on the gauge influence

function gi and a background weighting function b. The

function gi allows for greater weight ofQLGC near gauge

FIG. 8. Coverage of weighting variablews over the MRMS CONUS domain to influence use of

QMM in MSQPE generation. Inset shows detail of ws over Colorado.
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locations to locally retain the gauge-corrected radar-

based spatial representation of precipitation by reducing

the influence of QGAP via

g
i
5

8><
>:

b3 sin

�
pd

2R
i

�
; d#R

i

b; d.R
i

, (19)

where Ri is the radius of influence at a fixed value of

20 km and d is the distance of a grid cell from the nearest

gauge observation. The grid cell containing the gauge

observation will utilizeQLGC while a sine function using

b creates a seamless transition between QLGC at d 5 0

and the weighted combination ofQGAP andQLGC when

b 6¼ 0 and d # Ri.

Grid cells outside of Ri will rely solely on the

background weighting function b, which dynamically

changes in a similar manner to wg in order to vary the

contribution of QGAP for warmer and cooler atmo-

spheric environments. The background weighting func-

tion b utilized in wg and gi is characterized by RQI and

wf and is defined as

b5

0:00; RQI$ (1:002 0:70w
f
)

b
nz
; (0:602 0:60w

f
),RQI, (1:002 0:70w

f
)

b
max

; RQI# (0:602 0:60w
f
)

,

8><
>:

(20)

where

b
nz
5

8<
:b

max
2

2
4RQI2 (0:602 0:60w

f
)

21 3w
f

3
5
9=
;

3

2
4 (1:002 0:70w

f
)2RQI

(1:002 0:70w
f
)2 (0:602 0:60w

f
)

3
5, (21)

and

b
max

5 0:502 0:30w
f
. (22)

The combination ofwr andwg fromEq. (6) defines the

percent contribution of QLGC and QGAP at a grid cell

(Fig. 9). The QGAP and QLGC would have an equal

contribution for shallow stratiform rain and snow in

cooler environments (i.e., whenwf5 0.00) at RQI’ 0.75

and for convective regimes (wf 5 1.00) at RQI ’ 0.05.

The resulting MSQPE undergoes one last check before

producing the gridded output. The blending of pre-

cipitation inputs can generate areas of light precipita-

tion artifacts. Hourly precipitation values , 0.2mm

are reset to 0.0mm to mitigate instances of nonzero

MSQPE values being collocated with hourly gauges

observing no precipitation.

b. Product timing

TheMRMS system ingest of gauge networks captures

approximately 90% of all observations at 70min past

valid time. The data latency of gauge observations

combined with the computation time to generate both

QLGC and QMM along with the final MSQPE product

results in an approximately 85-min latency from valid

time for MSQPE. This makes MSQPE applicable for

hydrologic model forcing along with water resourcing

and climatological assessments but not for flash flood

detection and warning decisions. Rate-driven events

and quick basin response times would require the use

of a radar-only QPE (in areas where radar coverage is

provided) that have a data latency of ,90 s to help fa-

cilitate flash flood warning decision making.

4. Evaluation methodology

Hourly MSQPE products are created for the CONUS

at the top of the hour and accumulated to 24-h totals.

Performance evaluations of the MSQPE product were

then conducted on 43 event days west of 1008W lon-

gitude and 25 event days east of 1008W longitude

(Table 1). The three input precipitation sources and

the final MSQPE product were compared against in-

dependent Community Collaborative Rain, Hail and

Snow (CoCoRaHS) network daily gauge observations

(Cifelli et al. 2005). The comparison between CoCoRaHS

gauges and the 24-h precipitation product accumula-

tions were conducted over a 3-h period. Events over the

western CONUS were evaluated over a period from

1400 to 1600 UTC in standard time and from 1300 to

FIG. 9. The percent contribution of QLGC and QGAP based the

combination of wr and wg beyond the Ri influence of a gauge ob-

servation. The percent contribution shown is based on RQI value

and the weighting variable wf when wf 5 1.00 (solid line),

0.50 (short-dashed line), and 0.00 (long-dashed line).
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1500 UTC in daylight saving time. Eastern CONUS

events were evaluated from 1200 to 1400 UTC in stan-

dard time and from 1100 to 1300 UTC in daylight saving

time. This was done to utilize as many CoCoRaHS

observations as possible when generally reporting at

0700 local time. CoCoRaHS gauges . 610min of the

top of the hour were removed to avoid potential biases

from temporal differences. The authors also removed

CoCoRaHS gauge observations that were deemed

erroneous to prevent inaccurate results. Erroneous

gauges were either extreme outliers or zero values

in areas of significant precipitation (i.e., .12.7mm)

based on gridded QPEs and neighboring CoCoRaHS

gauges. An average of 3–6 CoCoRaHS observations

were removed per event day.

Statistical metrics used to evaluate the MSQPE

performance against the four input precipitation

sources include the mean bias ratio (MBR), mean

error (ME), mean absolute error (MAE), and Pearson

linear correlation coefficient (CC), which are de-

fined as

MBR5
�
N

i51

R
i

�
N

i51

G
i

, (23)

ME5
�
N

i51

(R2G)
i

N
, (24)

MAE5
�
N

i51

j(R2G)
i
j

N
, (25)

and

CC5
cov(R, G)

s
R
s
G

. (26)

The term R represents the gridded precipitation source,

G represents the CoCoRaHS gauge observations, N is

the number of R versus G comparisons over the 3-h

evaluation period, and s is the standard deviation.

Pairings where both R and G were not reporting pre-

cipitation were not used in the statistical analyses. The

removal of G, R 5 0 pairings resulted in an average of

925 R versus G comparisons for each western CONUS

event and 3500 for each eastern CONUS event. Particular

attention was given to the performances between the

radar-based approach (i.e., LGC radarQPE) andMSQPE

to demonstrate potential improvements from utilizing a

radar gap-filling methodology. All precipitation products

were ranked for each event day to determine howMSQPE

compared to the three gridded precipitation inputs across

the different statistical measures.

The R versus G comparisons were also binned into

three categories: the gauge and gridded precipitation

product reporting precipitation (G, R . 0), the gauge

reporting precipitation but the gridded precipitation

product does not (G . 0, R 5 0), and the gridded pre-

cipitation product reporting precipitation but the gauge

does not (G 5 0, R . 0). The distributions of these

categories were evaluated for the precipitation inputs

and final MSQPE product. Direct comparisons between

the LGC radar QPE and MSQPE will quantify how

the gap-filling precipitation sources reduced the G . 0,

R 5 0 instances and determine if false precipitation

areas are being introduced into MSQPE.

TABLE 1. List of the 68 total cases utilized to evaluate the MSQPE product separated by their domain areas over the CONUS. The

western CONUS events were focused on the area west of 1008W longitude, and the eastern CONUS events were focused on the area east

of 1008W longitude. The dates listed are the event days of the ending 24-h period. The range of hours listed represent the hourly periods

where gridded precipitation products were compared to CoCoRaHS observations, which were available during these hourly ranges due to

variations in reporting times.

Domain Year Month Dates Hours evaluated (UTC)

Western CONUS 2017 10 8–9, 11–13, 19–21 1300–1500

11 1–2 1300–1500

11 13–18, 21–24, 26–28 1400–1600

12 17–18, 21, 23–24 1400–1600

2018 2 4–6, 16–20 1400–1600

3 2–3 1400–1600

5 21 1300–1500

6 17–20 1300–1500

Eastern CONUS 2018 11 6, 9–10, 25–27 1200–1400

12 2–3 1200–1400

2019 2 12–13, 20, 25, 27–28 1200–1400

3 2–4 1200–1400

3 10–11, 14–15, 21–23, 31 1100–1300
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Two event days are also presented in detail. Included

in the case analyses are the hourly percent contributions

of each precipitation input to portray how each source

influenced MSQPE. The calculation for the percent

contribution of QLGC is

PERC
LGC

5

(12w
g
)w

r

w
g
1 (12w

g
)w

r

(12w
g
)w

r

w
g
1 (12w

g
)w

r

" #
1

w
g

w
g
1 (12w

g
)w

r

" # .

(27)

The percent contribution fields for the precipitation in-

puts that create QGAP are defined by the following:

PERC
MM

5 (12PERC
LGC

)w
m
, (28)

and

PERC
NWP

5 (12PERC
LGC

)(12w
m
) . (29)

5. Overall multisensor QPE performance

a. Comparing gridded precipitation products

Statistical measures of the 43 daily events over the

western CONUS exhibited numerous improvements

by MSQPE over the radar-centric LGC radar QPE

(Table 2). The average overall MBR value increased

from 0.747 to a more ideal 0.970. Initial underestimation

biases of LGC radar QPE can be primarily attributed

to the reduced radar and gauge observational density

resulting in missed or underrepresented precipitation

events. MSQPE produced seamless contiguous fields

which mitigated the systematic underestimation bias that

was a result of inadequate radar coverage. The average

ME for LGC radar QPE was reduced by 75% when

applying the MSQPE scheme, and the average MAE

was reduced by 12% to 2.447mm. The smaller decline

in MAE may be influenced by biases in the LGC radar

QPE and/or the gap-filling precipitation inputs having

estimation biases. Large biases with the precipitation in-

puts can also explain the minimal reduction of the MAE

standard deviation and the slight increase in the MBR

standard deviation from 0.140 to 0.176. The average

overall CC values were also improved by 11% to 0.833

along with a 47% reduction of the CC standard deviation.

The MAE and CC statistics for MSQPE outperformed

the three input precipitation sources, yet some of the input

sources appear to have better MBR andME statistics over

MSQPE. TheHRRRv2 1-hQPFs has amore idealmedian

MBR value as well as better median and average ME

values; however, the standard deviations of the MBR

and ME values for the HRRRv2 1-h QPFs are the

greatest among all evaluated products (Table 2). This

can be attributed to the HRRRv2 significantly over-

estimating precipitation magnitudes for certain events

while equally underestimating precipitation for other

events. The greater range of MBR values for the

HRRRv2 is more clearly demonstrated through com-

paring the interquartile spread between the 25th and

75th percentiles (Fig. 10a). A similar pattern of results

was shown for ME values. The HRRRv2 had a better

average ME value by 0.243mm over MSQPE, yet the

standard deviation and interquartile range was more

than double that of MSQPE (Fig. 10b) with reduced

correlation to independent gauges compared to the

other inputs and final MSQPE product (Fig. 10d). The

Mountain Mapper QPE was characterized by under-

estimation biases along with higher ME throughout

the evaluated cases; however, it did have comparable

MAE and CC values to MSQPE (Figs. 10c,d).

TABLE 2. The median, average (m), and standard deviation (s) of the MBR, ME, MAE, and CC statistical measures of the three input

precipitation products and the MSQPE product across the 43 evaluated cases over the western CONUS domain. The best value in each

statistical category is italicized.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

MBR Median 0.747 0.824 0.963 0.931

m 0.747 0.783 1.032 0.970

s 0.140 0.169 0.244 0.176

ME Median (mm) 21.521 21.047 20.206 20.449

m (mm) 21.526 21.081 20.097 20.380

s (mm) 1.011 0.534 1.332 0.667

MAE Median (mm) 2.699 2.472 3.176 2.364

m (mm) 2.780 2.480 3.453 2.447

s (mm) 0.990 0.865 1.554 0.801

CC Median 0.799 0.858 0.747 0.861

m 0.752 0.810 0.732 0.833

s 0.171 0.128 0.117 0.090
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Cumulative rankings of the statistical measures fur-

ther demonstrated how MSQPE was statistically supe-

rior, even though it was not the best ranked product

for every case in every measure (Fig. 11). The average

ranking for MSQPE was the best among the three input

sources apart from MAE, where Mountain Mapper

QPE had more event days with lower MAE values.

MSQPE was ranked first 47.67% of the time across the

four statistical categories for all event with the next

closest product beingMountainMapper QPE at 27.33%

(Table 3). MSQPE was ranked first or second 88.37%

of the time and had 98.84% of all first through third

rankings across the four statistical categories. Instances

when MSQPE did not outperform a precipitation input

were not statistically significant. MSQPE MAE values

not ranked first were within 0.50mm of the best ranked

product for 23 of those 25 occurrences. Of the 23 events

when MSQPE did not have the best CC, the difference

was less than 0.06 from the best recorded value in 21 of

those cases.

Similar overall statistical analysis and cumulative

rankings were conducted for the eastern CONUS cases

(Table 4). The average MBR of 0.922 for LGC radar

QPE was improved to 0.955 using the MSQPE scheme,

and the average ME value was reduced by 33%

to20.455mm. The HRRRv2 1-h QPFs again displayed

more ideal MBR and ME values; however, the large

standard deviation in these values along with the large

interquartile spread demonstrates the large variability

in biases in the HRRRv2 over the eastern CONUS

(Figs. 12a,b). The MSQPE product had the best aver-

age MAE and CC values, yet the differences between

MSQPE and the LGC radar QPE were minimal in both

the overall statistics (Table 4) and the box-and-whisker

representations (Figs. 12c,d).

The cumulative rankings of the 25 eastern CONUS

cases highlight some of the similarities of the LGC radar

QPE input and the final MSQPE product with respect

to MAE and CC (Figs. 13a,d), yet MSQPE had more

events ranked in the top two for the MBR and ME

FIG. 10. Box-and-whisker plots of (a) MBR, (b) ME, (c) MAE, and (d) CC for the three input precipitation

products (LGC radar QPE, Mountain Mapper QPE, and HRRRv2 1-h QPF) and the final MSQPE product across

the 43 evaluated events over the western CONUS domain. The boxes extend from the 25% quartile to the 75%

quartile with a horizontal line at the median values. The whiskers indicate the lowest and highest data points within

1.5 times the interquartile range of the 25% and 75% quartiles, respectively. Data points outside of the

1.5 interquartile range are represented by the solid points.

JULY 2020 MART INA I T I S ET AL . 1497

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/7/1485/4961665/jhm

d190264.pdf by N
O

AA C
entral Library user on 11 August 2020



values (22) than LGC radar QPE (13). The Mountain

Mapper QPE consistently displayed the greatest bias

among the four products through its systematic un-

derestimation of precipitation, and it was generally

ranked third for MAE and CC values (Fig. 13b). The

HRRRv2 1-h QPF MBR and CC rankings were scat-

tered among the 25 eastern CONUS events, but it

constantly had the greatest MAE and lowest CC values

(Fig. 13c). The MSQPE product across the four statis-

tical categories was ranked first at a rate of 42% fol-

lowed by LGC radar QPE at 35% (Table 5), yet the

combination of the LGC radar QPEwith the gap-filling

inputs allowed MSQPE to be ranked first or second

94% of the time. The differences betweenMSQPE and

the best ranked input for instances when MSQPE was

not ranked first were minimal. All MSQPE MAE

values that were not ranked first were ,0.3mm of the

best ranked input, and all CC values were within 0.007

of the best ranked input.

b. Precipitation coverage analysis

The perspective from G, R comparisons demon-

strated an improvement in coverage while minimizing

the addition of false precipitation areas for the western

CONUS events. The average percent of G, R . 0

pairings increased from 70.694% using LGC radar QPE

to 78.267%with MSQPE (Table 6); moreover, MSQPE

had better median, average, and standard deviation

values compared to its input sources. Box-and-whisker

depictions of the G, R . 0 comparisons further

FIG. 11. Cumulative rankings of all individual daily events evaluated by each statistical measure for (a) MRMS

LGC radar QPE, (b) MRMS Mountain Mapper QPE, (c) HRRRv2 1-h QPF, and (d) MSQPE. Darker shadings

correlate to the more times a precipitation product was ranked at that level compared to the other precipitation

products.

TABLE 3. The percent of the 43 evaluated cases over the western CONUS domain that were ranked first, first or second, and first through

third for the three input precipitation products and the MSQPE product. The best value in each statistical category is italicized.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

Rank percentage: 1 10.47 27.33 14.53 47.67

Rank percentage: 1–2 23.26 51.16 37.21 88.37

Rank percentage: 1–3 59.30 85.74 56.40 98.84
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demonstrate the improvement of MSQPE over the

input precipitation sources (Fig. 14a). The HRRRv2

1-h QPF had similar interquartile ranges and standard

deviations, yet the median and average values were

about 2%–3% lower than MSQPE. Mountain Mapper

QPE also achieved similar statistical performances

yet struggled in some events due to lack of gauge

coverage in certain regions to interpolate nonzero

observations or impacts from winter precipitation

preventing the measurement of liquid equivalent

values.

More significant improvements were noted in theG. 0,

R5 0 analysis. The percent of instances LGC radarQPE

missed precipitation decreased to 13.565% of pairings

classified as G . 0, R 5 0 for MSQPE (Table 6).

The 75th percentile of the G . 0, R 5 0 pairings

was reduced from 30.85% for LGC radar QPE to

17.66% when applying the MSQPE scheme (Fig. 14b).

TABLE 4. As in Table 2, but for the 25 eastern CONUS events.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

MBR Median 0.919 0.862 1.030 0.952

m 0.922 0.839 1.090 0.955

s 0.061 0.098 0.243 0.077

ME Median (mm) 20.643 21.135 0.334 20.455

m (mm) 20.708 21.208 0.222 20.475

s (mm) 0.559 0.605 1.158 0.581

MAE Median (mm) 2.521 2.665 4.186 2.416

m (mm) 2.456 2.756 4.070 2.477

s (mm) 0.635 0.732 1.202 0.632

CC Median 0.926 0.887 0.779 0.929

m 0.907 0.879 0.771 0.915

s 0.053 0.055 0.092 0.038

FIG. 12. As in Fig. 10, but for the 25 eastern CONUS events.
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The MSQPE, Mountain Mapper QPE, and HRRRv2

precipitation products all had similar statistical per-

formances with reduced instances of missed precipi-

tation compared to LGC radar QPE. Only a small

proportion of cases had the percent of G . 0, R 5 0

pairings below 5%. It is assumed that inaccurate non-

zero observations, nondetectable near-surface hydro-

meteors (e.g., fog or mist), condensation, or winter

precipitation impacts (e.g., blowing snow or postevent

thaw) would prevent near-zero percentages of G . 0,

R 5 0 pairings over large domains.

The LGC radar QPE performed the best overall

with minimizing false precipitation coverage with

an average of 7.295% of G, R comparisons classified

asG5 0, R. 0. This can be contributed to the greater

percentages of missed precipitation due to insuffi-

cient radar coverage and the utilization of an evap-

oration correction scheme in MRMS to reduce false

light precipitation (Martinaitis et al. 2018). The in-

crease of false precipitation in MSQPE was minimal

over LGC radar QPE (Table 6; Fig. 14c). This is at-

tributed to the blending of the other precipitation

sources into the MSQPE scheme that also had higher

percentages of G 5 0, R . 0 comparisons. The applica-

tion of reducing blended precipitation values, 0.2mm to

zero also improved the MSQPE performance over the

nonradar inputs.

The eastern CONUS events showed that the statistical

measures among the evaluated precipitation products

had similar trends to that of the western CONUS anal-

ysis with a few notable exceptions (Table 7; Fig. 15). The

G, R . 0 comparisons for LGC Radar QPE were more

comparable to Mountain Mapper QPE and HRRRv2 1-h

QPF due to greater radar coverage over the eastern

CONUS. The increased radar coverage also limited

the average percent of G . 0, R 5 0 comparisons over

FIG. 13. As in Fig. 11, but for the 25 eastern CONUS events.

TABLE 5. As in Table 3, but for the 25 eastern CONUS events.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

Rank percentage: 1 35.00 6.00 17.00 42.00

Rank percentage: 1–2 69.00 14.00 23.00 94.00

Rank percentage: 1–3 95.00 71.00 34.00 100.00
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the eastern CONUS (11.216%) versus the western

CONUS (22.011%). The greater radar coverage area

can also explain the domain-wide performance simi-

larities between the LGC radar QPE and the resulting

MSQPE product through the G, R comparisons. One

notable trend over the eastern CONUS was opposite of

that over the western CONUS: the percent of G 5 0,

R . 0 observations decreased from the LGC radar QPE

input. This is likely attributed to the nonevaporated

precipitation detected by radar at farther distances being

correctly removed through the blending of HRRRv2

when it generates zero values over those regions.

6. Case studies

a. 17–18 February 2018

Multiple radar coverage gaps highlighted the chal-

lenges of detecting shallow precipitation features and

accurately portraying the true areal precipitation extent

for this event. Prominent radar coverage gaps can be

TABLE 6. Themedian, average (m), and standard deviation (s) of the three input precipitation products and theMSQPE product across

the 43 evaluated cases over the western CONUS domain for the percent of G, R comparisons that are categorized into the following

pairings: (a) G, R . 0, (b) G . 0, R 5 0, and (c) G 5 0, R . 0. The best value in each statistical category is italicized.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

G, R . 0 Median 73.845 79.240 78.380 80.204

m 70.694 77.189 75.467 78.267

s 12.250 11.697 11.173 10.217

G . 0; R 5 0 Median 20.072 10.148 12.255 11.516

m 22.011 12.945 14.606 13.565

s 10.833 9.955 8.875 7.907

G 5 0; R . 0 Median 6.649 9.413 10.040 8.035

m 7.295 9.866 9.927 8.167

s 3.770 5.132 4.631 4.116

FIG. 14. As in Fig. 10, but for the percent of G, R comparisons that are categorized into the following pairings:

(a) G, R . 0, (b) G . 0, R 5 0, and (c) G 5 0, R . 0.
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seen over Montana, Idaho, northwest Wyoming, north-

ern Washington, and along the Oregon coast (Fig. 16a).

TheMountainMapperQPE (Fig. 16b) andHRRRv2 1-h

QPF (Fig. 16c) provided a better depiction of precipita-

tion coverage but with differences in magnitude across

the various mountain ranges and eastern Montana. The

MSQPE product generated a more continuous precipi-

tation field withmore enhanced accumulations across the

mountainous terrain while incorporating the HRRRv2

QPF values across the northern Plains. (Fig. 16d). The

MBR,ME, and CC values forMSQPE outperformed the

three input sources (Table 8). Mountain Mapper QPE

exhibited a lower MAE although having a significant

underestimation bias; however, the MSQPE MAE

was only 0.045mm greater but with a near-ideal MBR

of 0.965. The G, R comparisons between Mountain

Mapper QPE, HRRRv2 QPF, andMSQPE had similar

distributions; moreover, the differences in theG, R. 0

and G . 0, R 5 0 categories between MSQPE and the

LGC radar QPE demonstrate how the merged pre-

cipitation approach provides a more representative de-

piction of precipitation coverage based on the gauge

observations.

Focused analyses of the LGC radar QPE andMSQPE

products over the easternWashington to westernMontana

region emphasized the impacts of gap-filling prominent

TABLE 7. As in Table 6, but for the 25 eastern CONUS events.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

G, R . 0 Median 79.534 78.552 78.280 79.831

m 78.212 76.812 76.791 78.653

s 9.987 11.965 10.193 9.799

G . 0; R 5 0 Median 7.869 8.771 7.488 8.683

m 11.216 12.468 7.643 12.518

s 7.794 10.508 4.793 8.045

G 5 0; R . 0 Median 11.148 9.840 13.886 9.199

m 10.572 10.719 15.566 8.830

s 4.797 5.822 9.188 3.914

FIG. 15. As in Fig. 14, but for the 25 eastern CONUS events.
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radar coverage gaps that initially resulted in zero accu-

mulated precipitation by LGC radar QPE (Figs. 17a,b);

moreover, nonzero accumulation discontinuities from

beam blockages were also mitigated via the MSQPE

scheme. The various radar coverage challenges re-

sulted in 19.75% of G . 0, R 5 0 pairings for LGC

radar QPE and generated a poorly correlated under-

estimationMBRwith significant error values (Table 9).

This was also reflected in the scatterplot of CoCoRaHS

observations versus LGC radar QPE, notably with the

G, R comparisons located along the x axis (Fig. 17c).

Application of the MSQPE scheme resulted in a slight

overestimation bias for this area while reducing theME

and MAE by 84.0% and 32.1%, respectively. The CC

value was improved by 0.196 to 0.774, and the percent

of G . 0, R 5 0 pairings was significantly reduced

(Table 9; Fig. 17d).

The native hourly accumulations of LGC radar

QPE and MSQPE demonstrated how radar coverage

issues were resolved throughout this event, especially

in northern Idaho and far western Montana (Fig. 18).

Percent contribution plots characterized the extent of

FIG. 16. 24-h precipitation accumulation of (a) MRMS LGC radar QPE, (b) MRMS Mountain Mapper QPE,

(c) HRRRv2 1-h QPF, and (d) MSQPE QPE over the full western CONUS study domain for the period ending

1400 UTC 18 Feb 2018.

TABLE 8. Statistical measures MBR, ME, MAE, and CC along with the percent of G, R comparisons categorized into the G, R . 0,

G . 0, R 5 0, and G 5 0, R . 0 pairings for the three input precipitation products and the final MSQPE product over the full western

CONUS study domain for the 17–18 Feb 2018 event. The best value in each statistical category is italicized.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

MBR 0.539 0.756 1.093 0.965

ME (mm) 23.116 21.654 0.619 20.235

MAE (mm) 3.963 2.682 3.176 2.727

CC 0.660 0.817 0.803 0.822

G, R . 0 62.94% 79.42% 79.77% 79.61%

G . 0; R 5 0 33.90% 17.81% 15.21% 16.10%

G 5 0; R . 0 3.16% 2.77% 5.02% 4.29%
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radar coverage utilized by the MSQPE scheme and

how the other sources compensated for the coverage

(Fig. 19). The retention of radar coverage in MSQPE

was minimal due to subfreezing surface temperatures

reducing RQI values via Eq. (5). Mountain Mapper

QPE was only locally applied during the first half of the

event across the windward side of the Rocky Mountains

in areas where above-freezing wet-bulb temperatures

were modeled by the HRRRv2. This resulted in the

HRRRv2 1-h QPFs being the dominant gap-filling

source across the focused domain.

b. 12–13 February 2019

The 12–13 February 2019 event depicted how the

MSQPE scheme can be applicable over the eastern

CONUS while demonstrating how the overshooting

of precipitation features by radars can be compen-

sated for. The radar coverage of the 24-h accumula-

tions ending 1200 UTC 13 February 2019 did not

contain prominent gaps resulting in zero accumulated

precipitation, yet circular artifacts were prevalent through-

out the northern extent of the eastern CONUS domain

due to overshooting precipitation (Fig. 20a). Both

Mountain Mapper QPE and HRRRv2 1-h QPF had

similar accumulation coverages but varying accumu-

lation magnitudes (Figs. 20b,c), and their contribu-

tions to MSQPE yielded a more realistic depiction of

FIG. 17. 24-h precipitation accumulation of (a) MRMS LGC radar QPE and (b) MSQPE QPE across eastern

Washington, northern Idaho, and westernMontana for the 24-h period ending 1400UTC 18 Feb 2018. This focused

domain is bounded by the northwest corner 49.08N, 118.08W and the southeast corner 44.08N, 110.08W. Below are

the scatterplots of (c) MRMS LGC radar QPE and (d) MSQPEQPE compared to independent CoCoRaHS gauge

observations. The dashed line represents the one-to-one line between the CoCoRaHS gauges and the gridded

QPE values.

TABLE 9. As in Table 8, but for the focused domain bounded by

the northwest corner 49.08N, 118.08W and the southeast corner

44.08N, 110.08Wand only for the comparison ofMRMSLGC radar

QPE vs MSQPE of the 17–18 Feb 2018 event.

LGC radar QPE MSQPE

MBR 0.572 1.087

ME (mm) 25.046 1.025

MAE (mm) 6.231 4.030

CC 0.578 0.787

G, R . 0 80.25% 98.77%

G . 0; R 5 0 19.75% 1.23%

G 5 0; R . 0 0.00% 0.00%
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precipitation accumulations by mitigating radar cov-

erage challenges (Fig. 20d). Statistical analyses for

this event showed MSQPE improved over all three

input sources (Table 10), while the G, R comparisons

were similar between MSQPE and the three input

sources.

Examination of the 24-h accumulations of LGC radar

QPE andMSQPE over the New England area validated

the reduction of the underestimation bias from the

undersampling of hydrometeors (Fig. 21). The area

from Vermont to Maine had prominent areas of LGC

radar QPE accumulations of ,15mm with localized

areas of ,5mm, whereas MSQPE had large areal

depictions of 20–40mm over the 24-h period ending

1200 UTC 13 February 2019 (Figs. 21a,b). The scat-

terplots versus CoCoRaHS observations reflected

the underestimation of precipitation with LGC radar

QPE and the improvement with MSQPE despite some

FIG. 18. Hourly precipitation accumulation of (top) LGC radar QPE and (bottom) MSQPE across eastern

Washington, northern Idaho, and western Montana ending at the following times: (a),(d) 1900 UTC 17 Feb 2018,

(b),(e) 0100UTC 18 Feb 2018, and (c),(f) 1300UTC 18 Feb 2018. This focused domain is bounded by the northwest

corner 49.08N, 118.08W and the southeast corner 44.08N, 110.08W.

FIG. 19. The percent contribution of (a)–(c) LGC radarQPE, (d)–(f)MountainMapperQPE, and (g)–(i) HRRRv2

1-h QPF for the same 1-h time periods denoted in Fig. 18.
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notable scatter remaining in the data (Figs. 21c,d). The

focused domain MBR was improved from 0.771 to

0.922 with the ME and MAE being reduced by 66%

and 26%, respectively (Table 11). The scatter in data

for both products yielded low overall CC values, but

the MSQPE product improved the CC by 7.0%. The

G, R comparisons were identical between LGC radar

QPE and MSQPE.

Analyses of the event at the native hourly scale

demonstrated how coverage areas were filled while the

overshooting of precipitation was mitigated through the

MSQPE logic (Fig. 22). Increased precipitation cover-

age was most prevalent early in the event while im-

proved precipitation magnitudes were characterized

across the duration of the event. The surface and at-

mospheric environment variables greatly influenced

the percent contribution of the three input sources

(Fig. 23). The LGC radar QPE contribution varied

across the focused domain with more expansive uti-

lization of radar-derived QPE to the south due to

higher freezing-level heights associated with an oc-

cluded front. The HRRRv2QPFwas the sole source of

filling radar coverage gaps for this event. The Mountain

Mapper QPE did not contribute to MSQPE due to

subfreezing wet-bulb temperatures in the mountainous

terrain north of the occluded front and the expanded

radar coverage south of the front.

7. Summary

The primary objective of the MSQPE product

is to provide a methodology and a resulting high

FIG. 20. As in Fig. 16, but for the full eastern CONUS study domain for the period ending 1200 UTC 13 Feb 2019.

TABLE 10. As in Table 8, but over the full eastern CONUS study domain for the 12–13 Feb 2019 event.

LGC radar QPE Mountain Mapper QPE HRRRv2 1-h QPF MSQPE

MBR 0.927 0.871 1.093 0.972

ME (mm) 20.831 21.458 1.050 20.316

MAE (mm) 3.216 3.527 4.961 2.981

CC 0.875 0.843 0.773 0.897

G, R . 0 91.81% 91.23% 92.41% 91.94%

G . 0; R 5 0 3.12% 4.29% 1.83% 3.38%

G 5 0; R . 0 5.07% 4.48% 5.76% 4.68%

1506 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/7/1485/4961665/jhm

d190264.pdf by N
O

AA C
entral Library user on 11 August 2020



spatiotemporal resolution QPE to improve spatial rep-

resentations of precipitation. Radar-derived QPE is uti-

lized as the primary precipitation source in regions where

radar coverage is deemed as adequate. Gauge observa-

tions, precipitation climatologies, and NWP short-term

QPFs are seamlessly blended with the radar-based QPEs

to mitigate the challenges of overshooting precipitation,

significant beam blockages, and poor radar network

densities. The MRMS Mountain Mapper QPE is uti-

lized in stratiform rain only in regions of complex

terrain, while HRRRv2 1-h QPFs are incorporated ev-

erywhere else as radar gap-filling solutions. An updated

MRMSRQI product influences the coverage of adequate

radar data. Surface and atmospheric conditions, topog-

raphy, gauge locations, and precipitation values deter-

mined how each precipitation source is weighted within

the MSQPE scheme.

MSQPE consistently improved upon the radar-based

QPE in terms of statistical measures and the proportion

of G, R comparisons depicting accurate precipitation

coverages. The MSQPE technique generally had im-

proved evaluation results over all the input precipitation

sources, and when the MSQPE was not statistically the

best product, the differences between it and the best

ranked input precipitation product was mostly negligi-

ble. The two detailed case evaluations presented dem-

onstrated how the MSQPE scheme can adequately fill

radar coverage gaps where precipitation was not detected

due to significant beam blockage or poor coverage; more-

over, underestimation biases from radar overshooting

precipitation features were also mitigated.

The skill of the MSQPE scheme was only as good as

the quality and availability of its input sources. The LGC

radar QPE was generally the superior input precipitation

FIG. 21. As in Fig. 17, but for the New England area bounded by the northwest corner 46.08N, 76.08W and the

southeast corner 41.08N, 68.08W for the 24-h period ending 1200 UTC 13 Feb 2019.

TABLE 11. As in Table 9, but for the focused domain bounded by

the northwest corner 46.08N, 76.08W and the southeast corner

41.08N, 68.08W of the 12–13 Feb 2019 event.

LGC radar QPE MSQPE

MBR 0.771 0.922

ME (mm) 25.855 21.987

MAE (mm) 7.361 5.412

CC 0.471 0.504

G, R . 0 100.00% 100.00%

G . 0; R 5 0 0.00% 0.00%

G 5 0; R . 0 0.00% 0.00%
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source where adequate radar and gauge observations

were present. Improved observational densities and

data quality would inherently advance the quality of

QPE, which is demonstrated by the skill of the LGC

radar QPE between the western CONUS domain and

the more data rich eastern CONUS domain. The

HRRRv2 1-h QPFs were shown to have adequate skill

in portraying observed precipitation to successfully

assist in filling radar coverage gaps. Some overall statis-

tical measures of model-derived QPF appear to have

exceeded that of MRMS LGC radar QPE andMountain

Mapper QPE; however, larger standard deviations in

these statistical measures were also present based on

large variations of QPF biases. Operational advance-

ments to the HRRR model would improve the gap-

filling precipitation in areas where HRRRQPFs would

be the primary gap-filling source. A gauge-based bias

correction of NWP QPFs is under consideration to

improve MSQPE skill in the gap-filling regions.

The satellite-derived QPE (i.e., SCaMPR) consid-

ered for this study had significant challenges in spa-

tially detecting precipitation and providing accurate

FIG. 22. As in Fig. 18, but for the New England area ending at the following times: (a),(d) 2100 UTC 12 Feb 2019,

(b),(e) 0300UTC 13 Feb 2019, and (c),(f) 0900UTC 13 Feb 2019. This focused domain is bounded by the northwest

corner 46.08N, 76.08W and the southeast corner 41.08N, 68.08W.

FIG. 23. As in Fig. 19, but for the same 1-h time periods denoted in Fig. 22.
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precipitation magnitudes. Other satellite-derived QPEs

have improved precipitation detection and accuracy;

however, they generally lack the short-term data la-

tency required for real-time use or an appropriate

spatial resolution to properly capture precipitation gra-

dients. Flexibility within the MSQPE code allows for a

future implementation of the MSQPE algorithm with a

satellite-derived QPE component when satellite QPE per-

formancemetrics are deemed satisfactory for use. There are

current efforts across the research community to improve

satellite-derived QPE using the latest GOES satellites.

Continuous evaluations of the products can result in

future refinements to the algorithm in order to best meet

the needs of operational end-users. Research efforts to

develop the MSQPE scheme in future MRMS domains

over Alaska, Hawaii, the Caribbean, and Guam are also

ongoing. The MSQPE scheme for these non-CONUS

regions will begin with the foundational logic presented

in this study and later modified to handle the unique

precipitation regimes, data coverage challenges, and the

availability of various observations and NWP forecasts

for each future MRMS domain.
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